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ABSTRACT

Spoofing detection, which discriminates the spoofed speech from
the natural speech, has gained much attention recently. Low-
dimensional features that are used in speaker recognition/verification
are also used in spoofing detection. Unfortunately, they don’t cap-
ture sufficient information required for spoofing detection. In this
work, we investigate the use of high-dimensional features for spoof-
ing detection, that maybe more sensitive to the artifacts in the
spoofed speech. Six types of high-dimensional feature are em-
ployed. For each kind of feature, four different representations are
extracted, i.e. the original high-dimensional feature, corresponding
low-dimensional feature, the low- and the high-frequency regions
of the original high-dimensional feature. Dynamic features are also
calculated to assess the effectiveness of the temporal information to
detect the artifacts across frames. A neural network-based classifier
is adopted to handle the high-dimensional features. Experimental
results on the standard ASVspoof 2015 corpus suggest that high-
dimensional features and dynamic features are useful for spoofing
attack detection. A fusion of them has been shown to achieve 0.0%
the equal error rates for nine of ten attack types.

Index Terms— Spoofing attack, spoofing detection, counter-
measure, high-dimensional feature, phase

1. INTRODUCTION

Automatic speaker verification (ASV) system aims to verify the
claimed identity based on a given speech signal. For many security
systems, the robustness of ASV system against the spoofing attacks
is a major concern. However, even the state-of-the-art ASV systems
are not designed to sustain spoofing attacks, such as impersonation,
replay, speech synthesis and voice conversion, as reviewed in [1].
Specifically, attacks realised by speech synthesis [2] and voice con-
version [3], which provide easily accessible ways to generate high
quality speech of the target speaker, impose a genuine threat to
the ASV systems [4]. To address the threat of these two kinds of
synthetic spoofing attacks, one way is to improve the robustness
of ASV system by combining the detection process and verification
process [5]. An alternative way is to build some standalone detection
systems using different countermeasures, and this is also the focus
of this paper.

Selecting an effective feature to detect spoofing attacks is im-
portant. Considering the phase information is usually neglected by
many synthetic techniques, phase-based features are typically used
for anti-spoofing, such as modified group delay (MGD) [6, 7, 8, 9],

cosine-normalized phase [6, 9], relative phase shift (RPS) [10, 11,
12, 13], cochlear filter cepstral coefficients plus instantaneous fre-
quency (CFCCIF) [14]. Modulation-base features have been used
in [15] to detect temporal artifacts. Deep neutral networks have been
also used in [16] to extract more discriminant feature. A compari-
son between different features for synthetic spoofing detection can
be found in [17]. However, these are generally low dimensional fea-
tures, as they have been processed after several stages including fea-
ture extraction and dimension reduction. This is also to facilitate the
classifiers used, such as Gaussian mixture model (GMM) [18, 7, 15],
which is not designed to model the features with high dimension.

As the synthetic techniques typically exploit the low-dimensional
features, much detailed information has been abandoned in the
spoofed speech. These detailed information may be comprised in
the high-dimensional features extracted directly from the Fourier
transform. Hence, detailed information carried in high-dimensional
or high-frequency features might be useful for spoofing detection. In
our previous work [8], seven high-dimensional features, including
both magnitude- and phase-based features, are used for synthetic
spoofing detection. Even though the system achieves good perfor-
mance in the synthetic speech detection task, which confirms the
effectiveness of the high-dimensional features, it is still not clear
how to select a robust feature for spoofing detection.

In this work, we investigate spoofing detection from a feature
representation perspective with the following hypotheses:

– The high-dimensional feature is more effective than the low-
dimensional feature, as the high-dimensional features contain
more detailed information of magnitude and phase;

– The high-frequency region is effective for synthetic spoofing de-
tection, as this region is rarely modelled by speech synthesis or
voice conversion;

– The dynamic temporal information is important for spoofing de-
tection, even for high-dimensional features;

– Features derived from different sources are complementary and
a fusion of these features can improve detection performance.

To verify these hypotheses, we conduct a series of experiments us-
ing six features and the same neural network-based classifier. For
each feature, we extract high-dimensional, and corresponding low-
dimensional features. We also employ the low- and high-frequency
regions of the high-dimensional features to assess their effectiveness.



2. FEATURE REPRESENTATIONS FOR SPOOFING
DETECTION

2.1. Feature extraction

Six types of feature are used in this study. We choose these six
types because they show good performance [8]. They include two
magnitude-based features, namely log magnitude spectrum (LMS)
and residual log magnitude spectrum (RLMS); and four phase-based
features, namely instantaneous frequency derivative (IF), baseband
phase difference (BPD), group delay (GD) and modified group de-
lay (MGD). All the features are evaluated using short-time Fourier
transform (STFT) on the speech signal. The speech is sampled at
16KHz and the STFT analysis window is 25ms with 15ms overlap.
The Hamming window and direct current (DC) offset is applied on
each analysis frame. The magnitude and phase spectrum, extracted
directly from the Fourier transform, are further used to generate dif-
ferent magnitude- and phase-based features, respectively. The FFT
length is chosen to be 512 and the dimension of all the original fea-
tures are 256. The features are summarized as follows:

• LMS: The log magnitude spectrum feature, which contains the
formant information, harmonic structure and all the spectral de-
tail of speech signal. To reduce the dynamic range of the mag-
nitude spectrum, the logarithmic is used. In case of LMS both
large and small magnitude frequency components are visible.

• RLMS: To reduce the impact of formant information and better
analyse the harmonic structure and spectral details, the residual
log magnitude spectrum feature is used in this work. The inverse
linear predictive coding (LPC) filter is employed to estimate the
glottal waveform from the speech signal; then the LMS is ex-
tracted from the residual waveform.

• IF: Instantaneous frequency [19] is the derivative of the phase
along time axis. Therefore, it captures the temporal information
of phase. Unlike the original phase spectrum that hardly shows
any patterns, there are clear patterns in the IF spectrum, making
it possible to be used as a feature.

• BPD: Baseband phase difference [20] is a phase feature ex-
tracted from baseband STFT, which can also provide a clear
pattern to present phase information.

• GD: Group delay [21] is a representation of filter phase response,
which is defined as the negative derivative of the Fourier trans-
form phase. It is a frame-based feature, used to capture the phase
distortion along frequency axis.

• MGD: A variation of GD. The modified group delay [21] can
obtain a more clear phase pattern than GD. Two factors, α and
γ, are used for control the dynamic range of the modified group
delay, here the same setting as suggested in [8].

2.2. Feature representation

In order to investigate the effectiveness of the high-dimensional fea-
tures and relative contribution of the low- and the high-frequency
region for synthetic spoofing detection, different feature representa-
tions are used in this study, summarized as follows:

• HD: The original high-dimensional features which extracted di-
rectly from the Fourier transform without dimension reduction,
as described in Section 2.1. The dimension of HD feature is 256.

• LD: The low-dimensional representation of the HD feature. The
Mel-frequency scaled filter banks are computed over the corre-
sponding features to generate 23 filter bank coefficients.

• HD-LF: The low-frequency range of the HD feature, consisting
of the first half of 128 frequency bins.

• HD-HF: The high-frequency range of the HD feature, consisting
of the second half of 128 frequency bins.

The effectiveness of temporal information for synthetic spoofing
detection has been shown in many works [22, 17]. In [8], we use 51
frames and achieved good performance. Such a high-dimensional
feature, however, will increase the difficulty of classifier training.
Hence, the dynamic features, including delta and acceleration coef-
ficients, of all the representations noted above are extracted in this
study to capture the temporal information, namely HD-D, LD-D,
HD-LF-D, HD-HF-D.

2.3. Fusion

Considering the complementarity between different features, a score
level fusion is applied. Previous studies [8, 17] shown that single
type of feature is usually effective for certain types of artifact, while
may not be sensitive to other types of artifact. For example, the main
propose the LMS and RLMS features are to capture the artifacts of
magnitude, while the IF, BPD, GD and MGD are expected to de-
tect the distortion of phase. Hence, the system fusion is employed
to leverage and synergy the merits of different features. To avoid
over-fitting to development data, the scores of all systems are simply
averaged to produce the final score.

3. EXPERIMENTS

3.1. Experimental setup

The ASVspoof 2015 database [23] is used to assess the performance
of different features for synthetic spoofing detection. This database
consists of three subsets, including training set, development set
and evaluation set. There are totally 10 types of spoofing attack,
namely S1 to S10. The training and development sets only con-
tain the spoofing attacks generated by the first five methods (S1-S5);
while the evaluation set consists of the spoofing attack generated by
both five known methods (S1-S5) and five unknown methods (S6-
S10). Noted that, vocoders and low-dimensional features are used in
all the first nine methods (S1-S9)1; while waveform-based unit se-
lection is used to generate S10. More details about the database can
be found in [23].

Since we focus on feature representations, all the spoofing de-
tectors employed the same neural network (NN) based classifier, as
it is capable to model high-dimensional features. The NN consists
of one hidden layer with 2,048 sigmoid nodes and is used to per-
form frame-wise classification. Given testing utterance, the poste-
rior probabilities of all the frames are estimated and averaged over
the test utterance.

The equal error rate (EER) is used to evaluate the system perfor-
mance. The EER is obtained by selecting an operating point which
gives the equal miss rate and false alarm rate. In practice, the EERs
of each feature for different spoofing attacks are computed using the
Bosaris toolkit2. For feature-based systems, we only report the re-
sults on the evaluation set; while, for each speech synthesis/voice
conversion methods of the development set (S1-S5) and the eval-
uation set (S1-S10), the averaged EERs of the fused systems are
reported.

1Our system achieved the best performance on S1-S9 in the ASVspoof
2015 challenge.

2https://sites.google.com/site/bosaristoolkit/



Table 1. Averaged EERs (%) of different features on the evaluation set.

Feature LMS RLMS IF BPD GD MGD LMS RLMS IF BPD GD MGD LMS RLMS IF BPD GD MGD

Static(fb) 8.53 5.18 17.79 4.57 19.52 20.70 10.27 7.34 14.28 4.39 19.16 21.57 40.56 47.08 40.58 40.58 32.8 45.88

Static(fb)+D 3.08 4.72 15.66 3.32 11.16 23.60 3.88 6.45 16.00 2.96 18.87 25.19 38.14 46.52 42.37 29.59 39.01 48.31

Static 0.06 0.76 0.58 0.72 0.71 0.11 0.06 0.81 0.74 0.92 0.48 0.30 41.42 40.79 39.05 37.61 41.83 40.31

Static+D 0.02 0.34 1.31 0.10 0.05 0.00 0.01 0.36 1.31 0.09 0.03 0.02 35.24 30.8 25.56 30.67 33.9 38.54

Static(lf) 5.17 2.10 5.35 5.19 8.49 2.25 3.61 3.55 8.84 8.15 12.56 4.37 42.92 48.76 47.12 47.39 48.61 47.76

Static(lf)+D 0.91 1.27 1.22 1.39 1.21 0.29 0.78 2.63 1.59 1.69 2.17 0.45 43.53 48.82 37.77 39.23 46.33 46.02

Static(hf) 0.09 1.66 2.84 3.44 4.20 2.24 0.14 2.92 3.03 3.27 4.17 4.00 41.79 41.75 32.63 33.51 38.93 47.59

Static(hf)+D 0.03 0.94 1.5 2.59 2.06 0.67 0.05 1.74 1.24 1.90 2.49 4.71 36.68 31.31 27.07 35.51 35.6 43.09

Feature LMS RLMS IF BPD GD MGD LMS RLMS IF BPD GD MGD LMS RLMS IF BPD GD MGD

LD 8.53 5.18 17.79 4.57 19.52 20.70 10.27 7.34 14.28 4.39 19.16 21.57 40.56 47.08 40.58 40.58 32.8 45.88

LD-D 3.08 4.72 15.66 3.32 11.16 23.60 3.88 6.45 16.00 2.96 18.87 25.19 38.14 46.52 42.37 29.59 39.01 48.31

HD 0.06 0.76 0.58 0.72 0.71 0.11 0.06 0.81 0.74 0.92 0.48 0.30 41.42 40.79 39.05 37.61 41.83 40.31

HD-D 0.02 0.34 1.31 0.10 0.05 0.00 0.01 0.36 1.31 0.09 0.03 0.02 35.24 30.8 25.56 30.67 33.9 38.54

HD-LF 5.17 2.10 5.35 5.19 8.49 2.25 3.61 3.55 8.84 8.15 12.56 4.37 42.92 48.76 47.12 47.39 48.61 47.76

HD-LF-D 0.91 1.27 1.22 1.39 1.21 0.29 0.78 2.63 1.59 1.69 2.17 0.45 43.53 48.82 37.77 39.23 46.33 46.02

HD-HF 0.09 1.66 2.84 3.44 4.20 2.24 0.14 2.92 3.03 3.27 4.17 4.00 41.79 41.75 32.63 33.51 38.93 47.59

HD-HF-D 0.03 0.94 1.5 2.59 2.06 0.67 0.05 1.74 1.24 1.90 2.49 4.71 36.68 31.31 27.07 35.51 35.6 43.09

S1-S5 (Known) S6-S9 (Unknown) S10 (Unknown)

S1-S5 (Known) S6-S9 (Unknown) S10 (Unknown)

3.2. Results

From our preliminary results, we observe that the results on the de-
velopment set are similar to that of the S1 to S5 on the evaluation
set. Hence, we only report the results on the evaluation set, and
the feature-based results are presented in Table 1. Here, we sepa-
rate the results into three parts, the results of known attacks (S1-S5),
the results of unknown attacks using vocoders and low-dimensional
features (S6-S9) and the results for unknown attacks generated by
waveform (S10).

We first exam the effectiveness of the high-dimensional fea-
tures. As expected, the high-dimensional (HD) features always
outperform its corresponding low-dimensional (LD) representation.
Similar phenomenons were observed when dynamic features are
included, in particular the HD-D achieves lower error rates than the
LD-D. This is due to the low-dimensional feature is not capable
in capturing as much detailed information as the high dimensional
feature. It also implies that the detailed magnitude and phase in-
formation of speech signal contain more artificial cues for synthetic
spoofing detection.

We then compare the performance of the low- and the high-
frequency regions of the high-dimensional features. The results
show that the HD-HF feature always outperforms the corresponding
HD-LF feature. This suggests that the high-frequency region of
synthetic voice contains more artifacts than the low-frequency coun-
terpart. Low dimensional features, such as Mel-frequency scaled
filter banks, have high resolution at low frequency and low reso-
lution at high frequency. They take human perception sensitivity
with respect to frequencies into consideration, and therefore are best
for speech/speaker recognition. However, they are not designed
to be sensitive to the artifacts in synthetic speech signals. Some
interesting observations are found by using dynamic features: 1) For
magnitude-based features, LMS and RLMS, the high-frequency part
(HD-HF-D) outperforms its low-frequency counterpart (HD-LF-D).
Especially, for the LMS feature, the HD-HF-D feature (EER of
0.03%) obtain a very close detection accuracy to the HD-D feature
(EER of 0.02%), which are much better than the HD-LF-D feature
with an EER of 0.91%. This suggests that the high-frequency region
is the informative part of the LMS feature. 2) However, for phase-
based features, IF, BPD, GD and MGD, while using their dynamic
features, the performance of the HD-LF-D and HD-HF-D become
close, and the HD-LF-D performs even better in most case.

In general, the dynamic features outperform their static counter-
parts in most case. This indicates the importance of the temporal
information in synthetic spoofing detection. We also note that, com-
paring to the high-dimensional features, such as HD, HD-HF and
HD-LF, less improvement achieve for the low-dimensional (LD) fea-
tures by including dynamic information. Moreover, comparing to the
high-frequency (HD-HF) features, the low-frequency (HD-LF) fea-

tures obtain more benefits from dynamic features. Overall, the best
performance on S1-S5 of evaluation set is obtained by the MGD
feature of its high-dimensional with dynamic feature representation
(HD-D) achieving an EER of 0.0%.

With that, we now compare the performance across different
types of attack. Even though S6-S9 are using similar conversion
or synthesis techniques, slightly higher error rates are observed for
S6-S9 than that of S1-S5. This is because S1-S5 attacks are avail-
able for training, while S6-S9 are only available during evaluation.
However, due to the vocoders and low-dimensional features used for
generation are similar, the difference between them is not as large
as expected. Again, the MGD feature with its HD-D representation
achieves good performance on this set (EER of 0.02%). This im-
plies the effectiveness of phase information. The LMS feature with
the HD-D representation performs best with an EER of 0.01%.

For the unknown attacks (S10), the performance degrades dra-
matically. This is due to the fact that all the features used in our
systems aim for detecting the artifacts of either magnitude or phase.
However, S10 attacks are generated by unit selection algorithm,
which use original waveforms directly. Hence, the artifacts only
appear in the transition positions, which increase the difficult for
detection.

3.3. Fusion results

The results of fused systems on both development and evaluation
sets are presented in Table 2. From the results, we have following
observations. First, comparing to the systems using single feature,
the EERs of the fused system are reduced significantly on both de-
velopment and evaluation sets. Particularly, for the fused system
of HD-D, all the spoofing attacks in development set and most of
spoofing attacks in evaluation set (S1-S9) are detected with EERs of
0.0%. Second, all the fused systems fail to detect S10 generating by
waveform concatenation. We know that in unit selection most of the
speech samples are actually natural speech. The artifacts only exist
between the units. Third, again, the results confirm the effective-
ness of high-dimensional features, high-frequency information and
dynamic features for spoofing attacks detection. Finally, we confirm
that all the results are consistent with [8]. Specifically, for the devel-
opment set and (S1-S9) of evaluation set, our system outperforms the
previous system. The best results is achieved by the fusion system
of HD-D with the EER of 2.78%

4. DISCUSSIONS

4.1. Magnitude vs phase features

From the perspective of voice conversion and speech synthesis, arti-
facts are introduced in both magnitude and phase domains. For mag-



Table 2. EERs (%) of fused system on both development and evaluation sets. Pre-system indicates the results of our previous work [8].

Feature S1 S2 S3 S4 S5 Average S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Average

LD 0.87 2.78 1.06 0.84 1.20 2.55 0.85 2.22 0.61 0.61 7.74 9.38 2.41 0.41 0.81 41.38 6.64

LD-D 0.45 1.83 0.84 0.67 3.98 1.56 0.42 2.07 0.51 0.53 4.98 6.87 1.51 0.27 0.34 40.16 5.77

HD 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.00 0.00 0.00 37.42 3.75

HD-D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 27.79 2.78

HD-LF 2.41 1.83 0.03 0.07 1.73 1.21 1.34 1.44 0.04 0.08 1.54 1.77 1.45 0.26 1.05 45.95 5.49

HD-LF-D 0.25 0.23 0.01 0.02 0.24 0.15 0.10 0.10 0.00 0.01 0.17 0.22 0.18 0.01 0.07 41.90 4.28

HD-HF 0.04 0.00 0.00 0.01 0.30 0.07 0.03 0.04 0.02 0.03 0.27 0.29 0.01 0.00 0.01 36.20 3.69

HD-HF-D 0.00 0.00 0.00 0.00 0.12 0.02 0.00 0.00 0.00 0.00 0.13 0.07 0.00 0.00 0.00 28.82 2.90

Pre-system 0.04 0.00 0.00 0.44 0.14 0.12 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 26.10 2.62

Feature S1 S2 S3 S4 S5 Average S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Average

Static(fb) 0.87 2.78 1.06 0.84 1.20 2.55 0.85 2.22 0.61 0.61 7.74 9.38 2.41 0.41 0.81 41.38 6.64

Static(fb)+D 0.45 1.83 0.84 0.67 3.98 1.56 0.42 2.07 0.51 0.53 4.98 6.87 1.51 0.27 0.34 40.16 5.77

Static 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.00 0.00 0.00 37.42 3.75

Static+D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 27.79 2.78

Static(lf) 2.41 1.83 0.03 0.07 1.73 1.21 1.34 1.44 0.04 0.08 1.54 1.77 1.45 0.26 1.05 45.95 5.49

Static(lf)+D 0.25 0.23 0.01 0.02 0.24 0.15 0.10 0.10 0.00 0.01 0.17 0.22 0.18 0.01 0.07 41.90 4.28

Static(hf) 0.04 0.00 0.00 0.01 0.30 0.07 0.03 0.04 0.02 0.03 0.27 0.29 0.01 0.00 0.01 36.20 3.69

Static(hf)+D 0.00 0.00 0.00 0.00 0.12 0.02 0.00 0.00 0.00 0.00 0.13 0.07 0.00 0.00 0.00 28.82 2.90

Development set Evaluation set

Development Evaluation

nitude, the artifacts are mainly due to over-smoothing in both tem-
poral and frequency domains. Over-smoothing in temporal structure
lowers the variation of the spectral trajectory for synthetic speech.
While over-smoothing in frequency domain can result in missing of
spectral details. These phenomenons have been intensively reported
in both voice conversion [3] and speech synthesis [2].

Similarly, for phase, even though it has been shown the useful-
ness for speech perception [24], it is very hard to find stable patterns
for modelling. Hence, in most vocoders, the original/natural phase is
discarded and replaced with a minimum phase, thus, leaving obvious
artifacts.

The success of magnitude and phase-based features in spoofing
detection confirms that the artifacts exist in both these two parts.

4.2. High-dimensional vs low-dimensional features

For magnitude, low-dimensional features are commonly used in
voice conversion and speech synthesis. However, the limitation
of low-dimensional features for capturing the detailed spectral in-
formation is reported in [25, 26]. It was noticed that the use of
low-dimensional features result in loss of spectral details in the
synthetic speech signals. Hence, there should be more artifact cues
in spectral details for synthetic spoofing detection. This is con-
firmed by the results shown in previous section, which indicate
that the low-dimensional features perform much worse than the
high-dimensional counterparts.

For phase-based features, such as IF, GD and MGD, the per-
formances of their low-dimensional (LD) representations are much
worse than their HD counterparts. Although, after processing, some
patterns are observed in the HD phase features, in general, the pat-
terns are still not as clear as those of magnitude-based features. The
patterns become blurred after dimension reduction using filter banks.

4.3. High-frequency vs low-frequency features

In general, low-dimensional features, used in most speech synthe-
sis and voice conversion approaches, model the low-frequency of
speech information more accurately than its high-frequency coun-
terpart. Additionally, due to the smoothing effect of modelling, the
spectral details can be further lost. Hence, with magnitude-based
features, artifacts are easier to find in the high-frequency region. Our
results, in Section 3, confirm the effectiveness of the high-frequency
features. Similar conclusion can also be found in [17].

The situation is a bit different in phase-based features. As
not modelled in speech synthesis or in voice conversion, the phase
features do not contain the smoothing effects of modelling and
the issues concerning low-dimensional features. However, the
phase generated by vocoder is still different from that of natural

speech. Different to the results of magnitude-based features, with
the phase-based features implemented with dynamic features, the
low-frequency (HD-LF) outperforms the high-frequency (HD-HF).
But, the performance of high-dimensional features (HD) is much
better than either the low-frequency or the high-frequency. This
suggests that both the low- and the high-frequency of phase-based
features contribute to the synthetic spoofing detection.

4.4. Difficulty in detecting unit selection-based attacks

Similar to all the other systems submitted to the ASVspoof 2015
challenge [23], our system doesn’t perform as expected in S10,
which is an unit-selection based attack. The unit-selection based
attack is produced by concatenating the time-domain waveform
directly without any vocoding and feature extraction techniques,
which doesn’t carry much artifacts from the perspective of feature
representations.

According to the human perception study [27], human listen-
ers can easily detect the unit-selection attack, as human ear can de-
tect the artifacts of the discontinuity at the waveform concatenating
points. We will investigate techniques to detect such discontinuities
for spoofing detecting in the future work.

5. CONCLUSIONS

In this paper, we investigate the high-dimensional features and the
high-frequency information to discriminate synthetic spoofing at-
tacks and natural speech. The experiments results show that,
• the high-dimensional features outperform its low-dimensional

representations;
• the high-frequency and the low-frequency information are com-

plementary in discriminating synthetic spoofing attacks and nat-
ural speech;

• the dynamic features are useful for synthetic spoofing attacks
detection;

• fusion of different systems improve the detection performance.
Additionally, by applying the score level system fusion, all the
spoofing attacks using vocoders and low-dimensional features are
successfully detected. While poor performance is observed for unit
selection-based spoofing attacks. Therefore, in future, we will in-
vestigate more robust feature to detect such kind of spoofing attacks.
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of features for synthetic speech detection,” in Proc. INTERSPEECH,
2015.

[18] Tomi Kinnunen, Zhi-Zheng Wu, Kong Aik Lee, Filip Sedlak,
Eng Siong Chng, and Haizhou Li, “Vulnerability of speaker verifi-
cation systems against voice conversion spoofing attacks: The case of
telephone speech,” in Proc. IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2012, pp. 4401–
4404.

[19] Leigh D Alsteris and Kuldip K Paliwal, “Short-time phase spectrum in
speech processing: A review and some experimental results,” Digital
Signal Processing, vol. 17, no. 3, pp. 578–616, 2007.

[20] Michal Krawczyk and Timo Gerkmann, “STFT phase reconstruction
in voiced speech for an improved single-channel speech enhancement,”
IEEE Transactions on Audio, Speech, and Language Processing, vol.
22, no. 12, pp. 1931–1940, 2014.

[21] Bayya Yegnanarayana and Hema A Murthy, “Significance of group
delay functions in spectrum estimation,” IEEE Transactions on Signal
Processing, vol. 40, no. 9, pp. 2281–2289, 1992.

[22] Xiaohai Tian, Steven Du, Xiong Xiao, Haihua Xu, Eng Siong Chng,
and Haizhou Li, “Detecting synthetic speech using long term magni-
tude and phase information,” in Proc. IEEE China Summit and Inter-
national Conference on Signal and Information Processing (ChinaSIP).
IEEE, 2015, pp. 611–615.

[23] Zhizheng Wu, Tomi Kinnunen, Nicholas Evans, Junichi Yamagishi,
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