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Abstract
Voice conversion techniques present a threat to

speaker verification systems. To enhance the security of
speaker verification systems, We study how to automat-
ically distinguish natural speech and synthetic/converted
speech. Motivated by the research on phase spectrum in
speech perception, in this study, we propose to use fea-
tures derived from phase spectrum to detect converted
speech. The features are tested under three different train-
ing situations of the converted speech detector: a) only
Gaussian mixture model (GMM) based converted speech
data are available; b) only unit-selection based converted
speech data are available; c) no converted speech data are
available for training converted speech model. Experi-
ments conducted on the National Institute of Standards
and Technology (NIST) 2006 speaker recognition evalu-
ation (SRE) corpus show that the performance of the fea-
tures derived from phase spectrum outperform the mel-
frequency cepstral coefficients (MFCCs) tremendously:
even without converted speech for training, the equal er-
ror rate (EER) is reduced from 20.20% of MFCCs to
2.35%.
Index Terms: Speaker verification, voice conversion,
anti-spoofing attack, synthetic speech detection, phase
spectrum

1. Introduction
Speaker verification is a process to confirm a claim of
identity based on the user’s speech samples [1, 2]. There
are two possible outcomes: the claim is accepted or re-
jected. On the other hand, voice conversion is to modify
one speaker’s voice (source speaker) to sound like that
of another speaker (target speaker) [3, 4, 5]. Therefore,
voice conversion technique can be used to modify an im-
postor’s voice to sound like that of the claimed speaker to
attack the speaker verification system.

In response to such a potential threat, many studies
have been conducted on the vulnerability of speaker veri-
fication systems against synthetic speech. The security or
vulnerability of speaker verification systems have been

studied against imposture using synthetic speech from
HMM-based speech synthesis system [6, 7, 8], adapted
statistical speech synthesis system [9] and voice conver-
sion techniques [10, 11], which are carried out on high
quality speech.

Spoofing attack researches on telephone speech are
also conducted. In [12], The vulnerability of GMM-
based speaker verification system against voice conver-
sion attacks is studied on the National Institute of Stan-
dards and Technology (NIST) 2006 speaker recognition
evaluation (SRE) corpus. In our previous works [13], the
performance of five speaker verification systems includ-
ing the state-of-the-art joint factor analysis (JFA) system
against spoofing attacks using GMM-based voice conver-
sion techniques are evaluated on NIST 2006 SRE corpus.
Then the vulnerability of the JFA system against unit-
selection based and GMM-based converted speech is also
compared on NIST 2006 SRE corpus [14].

All the previous studies on both high quality speech
and telephone speech confirmed that synthetic speech
from statistical speech synthesis systems or voice con-
version techniques present a threat to speaker verification
systems.

In [15], a technique was studied that makes use of
the differences in the relative phase shift [16] between
high quality human and synthetic speech signals to de-
tect synthetic speech from a HMM-based speech synthe-
sis system. In this study, it was assumed that the synthetic
speech data are available for training a detector. How-
ever, in real applications, we don’t have the information
as to what kinds of speech synthesis techniques or voice
conversion techniques are used in the spoofing attacks.
Hence, no synthetic speech data are actually available.
In this study, we focus on detecting spoofing attacks us-
ing voice conversion techniques on telephone speech, and
propose to use features derived from the phase spectrum,
which has been shown to be useful in speech recognition
[17, 18], to detect converted speech without the need to
know the exact voice conversion techniques.



2. Phase information in voice conversion

Although converted speech has been shown to be able to
confuse a speaker verification system in many reported
work [10, 11, 13, 14], informal listening tests show that
human ear can easily distinguish natural speech and con-
verted speech. It has been shown that phase spectrum is
useful for speech perception [19, 20] , and the fact that the
original/natural phase information is missing in the con-
verted speech, we would like to look into how converted
speech can be detected by using phase features.�� ������ ����� ���� 	
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Figure 1: Typical voice conversion procedure.

In Figure 1, we show a typical voice transformation
procedure. A speech signal is first analyzed to extract
parameters, such as fundamental frequency, spectral en-
velop parameters, which are then converted by an already
trained transformation function. Finally the converted
parameters are passed to synthesis filter to reconstruct
waveform. In the parameter extraction step, we usually
extract fundamental frequency and speech envelop pa-
rameters, ignoring the phase information. As a result,
the original/natural phase information is not kept in the
reconstructed waveform.

The best way to build a converted speech detector is
to train a converted speech model that characterizes the
signal. If converted speech data are available, converted
speech models can be trained right away. One notes that
the difference between voice conversion techniques lies
in the transformation module in Figure 1. In the case
when converted speech data are not available, if we can
extract the parameters from natural speech and pass di-
rectly to the synthesis filter, it is possible that the resulting
synthesized speech carry the characteristics of converted
speech. We will look into how such synthesized speech
can be used to train the converted speech model.

3. Phase information extraction for
modeling

Although speech signal is non-stationary, it can be as-
sumed as quasi-stationary. Therefore, speech signal can
be processed by short-time Fourier analysis. Given a
speech signal x(n), the short-time Fourier transform
(STFT) is given as follows:

X(ω) =| X(ω) | ejψ(ω) (1)

where | X(ω) | is the short-time magnitude spectrum,
and ψ(ω) is the short-time phase spectrum. The square
of magnitude spectrum, | X(ω) |2, is usually called the
power spectrum, from which the mel-frequency cepstral
coefficients (MFCCs) are derived.

As natural phase information is missing in the recon-
structed speech/converted speech, phase spectrum can be
used to derive features providing the evidence of con-
verted speech. In this study, two different features will
be derived from phase spectrum as follows.

3.1. Cosine normalization of phase spectrum

As the original phase spectrum is not continuous in fre-
quency domain, we first unwrap the phase spectrum as a
continuous function of frequency. After unwrapping, the
range of spectrum could vary which makes it difficult to
model phase information. Cosine function is then applied
on the unwrapped phase spectrum to normalize the range
into [−1.0, 1.0]. Then discrete cosine transform (DCT)
is applied on the Cosine normalized phase spectrum to
reduce dimensionality. Finally we keep 12 cepstral co-
efficients, excluding the 0th coefficient. This feature is
called cos-phase in this study.

3.2. Frequency derivative of phase spectrum

The second feature is the frequency derivative of phase
spectrum, obtained by the group delay function (GDF)
which is a measure of the nonlinearity of the phase spec-
trum [17] and defined as the negative derivative of the
phase spectrum with respect to ω:

τ(ω) =
XR(ω)YR(ω) + YI(ω)XI(ω)

| X(ω) |2 (2)

where Y (ω) is the STFT of nx(n); XR(ω), XI(ω) and
YR(ω), YI(ω) are the real part and imaginary part of
X(ω) and Y (ω), respectively.

To capture the fine structure of group delay phase
spectrum, in practice, a modified group delay function
is adopted. Smoothed power spectrum is used instead of
original power spectrum and two variables are introduced
to emphasis the fine structure of the phase spectrum. The
modified group delay function is described as follows.

τγ(ω) =
XR(ω)YR(ω) + YI(ω)XI(ω)

| S(ω) |2γ
(3)



τα,γ(ω) =
τγ(ω)
| τγ(ω) | | τγ(ω) |α (4)

where | S(ω) |2 is the smoothed power spectrum,
τα,γ(ω) is the modified group delay phase spectrum, α
and γ are two variables to make the phase spectrum be
presented in favorable form, α and γ are set to 0.4 and
1.2 in this study, respectively.

After modified group delay phase spectrum is ob-
tained, discrete cosine transform (DCT) is applied. We
keep 12 cepstral coefficient, excluding the 0th coefficient.
The 12 dimension feature are used for model training and
detection and this feature is called MGDF-phase in this
study.

4. Experimental setups and results
In this study, the performance of cos-phase and MGDF-
phase features (without delta and delta-delta coefficients)
are evaluated for converted speech detection under three
different training situations: a) only GMM-based con-
verted speech data are available; b) only unit-selection
based converted speech data are available; c) no con-
verted speech data are available. We use 12 dimen-
sion mel-frequency cepstral coefficients (MFCCs) and
their delta and delta-delta coefficients, which are used in
speaker verification [13, 14], as the reference baseline.

The natural/converted speech decision is made using
log-scale likelihood ratio as follows:

Λ(C) = log p(C|λconverted)− log p(C|λnatural) (5)

where C is the feature vector sequence of a speech
signal, λconverted is the GMM model for converted
speech, and λnatural is the GMM model for natural
speech. Under the three different situations, we have
the same natural speech model λnatural, but three dif-
ferent converted speech model λconverted . The number
of Gaussian components of GMM is set to 512. Equal
error rate (EER) is reported as the evaluation criterion.

4.1. Corpora

A subset of the NIST 2006 SRE corpus, and a subset of
the spoofing attack corpora are adopted. The spoofing
attack corpora are created using two different voice con-
version methods (GMM-based voice conversion and unit-
selection based voice conversion method) in our previous
studies [13, 14]. In constructing the converted speech cor-
pora, mel-cepstral analysis [21] and MLSA filter [21] are
adopted for feature extraction and waveform reconstruc-
tion, respectively. In practice, the Speech Signal Process-
ing Toolkit (SPTK) tool [22] is used.

We use 100 sessions of natural speech to train the
natural speech model λnatural. The testing data con-
sist of 1,500 sessions of natural speech (original wave-
form from NIST 2006 SRE corpus), 1,000 sessions of

GMM-based converted speech and 1,000 sessions of unit-
selection based converted speech. The duration of each
sessions of natural speech or converted speech is roughly
5 minutes.

4.2. GMM-based converted speech are available

Assume that we have 100 sessions of GMM-based con-
verted speech for training of λconverted. The perfor-
mance of the three different features are presented in Ta-
ble 1. With cos-phase and MGDF-phase features, the
EER is reduced from 16.8% of MFCCs to 6.60% and
9.13%, respectively.

Table 1: Equal error rate (EER, %) of detection perfor-
mance when GMM-based converted data is available for
training.

Feature Equal Error Rate (%)
MFCCs 16.80

cos-phase 6.60
MGDF-phase 9.13

4.3. Unit-selection based converted speech are avail-
able

Assume that we have 100 sessions unit-selection based
converted speech to estimate the parameters of the con-
verted speech model λconverted. The detection results are
presented in Table 2. We note that the cos-phase and
MGDF-phase features reduce the EER from 15.35% of
MFCCs to 3.93% and 4.60%, respectively.

Table 2: Equal error rate (EER, %) of detection perfor-
mance when unit-selection based converted data is avail-
able for training.

Feature Equal Error Rate (%)
MFCCs 15.35

cos-phase 3.93
MGDF-phase 4.60

4.4. No converted speech data are available

In this case, we assume that neither GMM-based nor unit-
selection based converted speech is available for train-
ing, but the speech analysis module and synthesis filter
are available. Therefore, we extract parameters from the
100 sessions of natural speech for training natural speech
model λnatural, and then pass the parameters directly
to the synthesis filter to reconstruct the waveforms. We
then use the 100 resulting sessions to train the converted
speech model λconverted. The detection error tradeoff
(DET) curves are presented in Figure 2. We can see



that even without converted speech for training the de-
tector, the performance of the features derived from phase
spectrum outperform the MFCCs tremendously. The cos-
phase and MGDF-phase features reduce the EER from
20.20% of MFCCs to 5.95% and 2.35%, respectively.
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Figure 2: DET curve of detection performance when con-
verted data is NOT available for training.

5. Conclusions
In this study, the features, cos-phase and MGDF-phase,
derived from phase spectrum are adopted to detect con-
verted speech for spoofing attack to enhance the security
of speaker verification system. Under three different situ-
ations, the proposed features outperform the MFCCs con-
sistently, especially when converted speech is not avail-
able for training. To detect converted speech in the
paradigm of Figure 1, we have shown that our analysis-
synthesis method offers an effective alternative solution
that simulates converted data when actual voice transfor-
mation techniques are unavailable.
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